

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

On Primitive 11-Centralizer Groups of Odd Order

Mehdi Rezaei *1 and Zeinab Foruzanfar 2

- ¹Department of Mathematics, Buein Zahra Technical University, Iran
- ²Department of Physics and Engineering Sciences, Buein Zahra Technical University, Iran

E-mail: mehdrezaei@gmail.com and m_rezaei@bzte.ac.ir *Corresponding author

ABSTRACT

Let G be a finite group and let |Cent(G)| be the number of distinct centralizers of its elements. G is called n-centralizer if |Cent(G)| = n and is called primitive n-centralizer if $|Cent(G)| = |Cent(\frac{G}{Z(G)})| = n$. In this paper, we characterize all primitive 11-centralizer groups of odd order.

 $\begin{tabular}{ll} \textbf{Keywords:} & Covering, n-centralizer group, Primitive n-centralizer group, \\ Odd. \\ \end{tabular}$

1. Introduction

In this paper, all groups are finite and all notations are standard. For example \mathbb{Z}_n denotes the cyclic group of order n, Z(G) denotes the center of a group G, D_{2n} denotes the dihedral group of order 2n and $K \times H$ denotes the semidirect product of K and H with normal subgroup K. A finite group G is said to be an AC-group if $C_G(x)$ is abelian for all $x \in G \setminus Z(G)$. It was shown in Baishya (2013) that if $\left| \frac{G}{Z(G)} \right| = pq$ or pqr where p,q,r are primes not necessarily distinct, then G is an AC-group. We recall that a group G is called capable if there exists a group H such that $G \cong \frac{H}{Z(H)}$. Given a group G, let Cent(G) be the set of centralizers of elements of G, i.e., Cent(G) := $\{C_G(x)|x\in G\}$, where $C_G(x)$ is the centralizer of the element x in G. A finite group G is called n-centralizer if |Cent(G)| = n and primitive n-centralizer if $|Cent(G)| = |Cent(\frac{G}{Z(G)})| = n$. Obviously a finite group G is 1-centralizer if and only if it is abelian. It was shown in Belcastro and Sherman (1994) that there is no finite n-centralizer group for $n \in \{2,3\}$. Also all finite ncentralizer groups for $n \in \{4, 5\}$ were classified. As a simple result, we can see that there is no finite primitive 4-centralizer group. Moreover a finite group Gis primitive 5-centralizer if and only if $\frac{G}{Z(G)} \cong S_3$. In Ashrafi (2000a), all finite 6-centralizer groups were studied. Also it was shown in Ashrafi (2000b) that if G is primitive 6-centralizer, then $\frac{G}{Z(G)} \cong A_4$. In Abdollahi et al. (2007), all n-centralizer groups were characterized for $n \in \{7,8\}$ and it was shown that there is no finite primitive 8-centralizer group. In Ashrafi and Taeri (2006), the structure of finite primitive 7-centralizer groups were verified. Also in Foruzanfar and Mostaghim (2015), finite primitive 9-centralizer groups were classified and it was shown that if G is primitive 9-centralizer, then $\frac{G}{Z(G)} \cong D_{14}$, $T_{21} = \langle a, b | a^3 = b^7 = 1, ba = ab^2 \rangle$ or $\langle a, b | a^6 = b^7 = 1, a^{-1}ba = b^3 \rangle$. Finally in Foruzanfar and Mostaghim (2014), it was proved that there is no finite 10-centralizer group of odd order. The purpose of this paper is to classify all primitive 11-centralizer groups of odd order.

Theorem 1.1. If G is a primitive 11-centralizer group of odd order, then $\frac{G}{Z(G)}$ is isomorphic to $(\mathbb{Z}_9 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3$.

2. Preliminary Results

A cover for a group G is a collection \mathcal{H} of proper subgroups of G such that $G = \bigcup_{H \in \mathcal{H}} H$. A cover with n members is called n-cover, for a natural number n. Also it is called irredundant if no proper sub-collection is also a cover and is called a partition with $kernel\ K$ if the intersection of pairwise

members of the cover is K. Neumann (1954) proved that for a group G with an irredundant n-cover, the index of the intersection of the cover in G is bounded by a function of n and Tomkinson (1987) improved that bound. Let f(n) be the largest index |G:D|, where G is a group with an irredundant n-cover whose intersection of its members is D. Scorza (1926) was the first who posed a question on finite covers. He settled the question which groups are the union of three proper subgroups and proved f(3) = 4. Furthermore, Greco (1957), Bryce et al. (1997), Abdollahi et al. (2005) and Abdollahi and Jafarian Amiri (2007) obtained the values of f(n), for n = 4, 5, 6, 7, respectively and they proved that f(4) = 9, f(5) = 16, f(6) = 36 and f(7) = 81. In order to prove Theorem 1.1, we first present some lemmas and propositions that will be used in proof of it.

Lemma 2.1. (Theorem 6 of Belcastro and Sherman (1994)) Let p be a prime. If $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$, then |Cent(G)| = p + 2.

Corollary 2.1. (Corollary 2.5 of Baishya (2013)) Let $p \ge q$ be primes. If $\left|\frac{G}{Z(G)}\right| = pq$, then |Cent(G)| = p+2.

Lemma 2.2. (Lemma 2.6 of Foruzanfar and Mostaghim (2015)) Let G be a finite non-abelian group and $|G| = p^2q$ where p and q are distinct prime numbers

- a) If p < q, then $G = A_4$ or |Cent(G)| = q + 2.
- b) If p > q, then |Cent(G)| = p + 2 or $p^2 + 2$.

Lemma 2.3. (Lemma 2.1 of Baishya (2013)) Let $\left|\frac{G}{Z(G)}\right| = pqr$, where p, q, r are primes not necessarily distinct. Then G is an AC-group.

Lemma 2.4. (Lemma 3.3 of Tomkinson (1987)) Let M be a proper subgroup of the finite group G and let $H_1, H_2, ..., H_k$ be subgroups of G with $|G: H_i| = \beta_i$ and $\beta_1 \leq ... \leq \beta_k$. If $G = M \cup H_1 \cup ... \cup H_k$, then $\beta_1 \leq k$. Furthermore, if $\beta_1 = k$, then $\beta_1 = \beta_2 = ... = \beta_k = k$ and $H_i \cap H_j \leq M$ for any two distinct i and j.

Definition 2.1. A non-empty subset $X = \{x_1, ..., x_r\}$ of a finite group G is called a set of pairwise non – commuting elements if $x_i x_j \neq x_j x_i$ for all distinct $i, j \in \{1, ..., r\}$. A set of pairwise non-commuting elements of G is said to have maximal size if its cardinality is the largest one among all such sets.

Remark 2.1. Let G be a finite group and $\{x_1, ..., x_r\}$ be a set of pairwise non-commuting elements of G having maximal size. Then

- (1) $\{C_G(x_i)|i=1,...,r\}$ is an irredundant r-cover with the intersection $Z(G) = \bigcap_{i=1}^r C_G(x_i)$ (see Theorem 5.1 of Tomkinson (1987)).
- (2) $\left|\frac{G}{Z(G)}\right| \le f(r)$ (see Corollary 5.2 of Tomkinson (1987)).
- (3) f(3) = 4, f(4) = 9, f(5) = 16, f(6) = 36 and f(7) = 81 (see Scorza (1926),

Greco (1957), Bryce et al. (1997), Abdollahi et al. (2005) and Abdollahi and Jafarian Amiri (2007), respectively).

(4) Let G be a group such that every proper centralizer in G is abelian. Then for all $a, b \in G \setminus Z(G)$ either $C_G(a) = C_G(b)$ or $C_G(a) \cap C_G(b) = Z(G)$.

If $z \in (C_G(a) \cap C_G(b)) \setminus Z(G)$, then $C_G(z)$ contains both $C_G(a)$ and $C_G(b)$, since $C_G(a)$ and $C_G(b)$ are abelian. Since z is not in Z(G), $C_G(z) \leq C_G(a)$ and $C_G(z) \leq C_G(b)$. Thus $C_G(z) = C_G(a) = C_G(b)$. Hence, in such a group G, $\{C_G(x) | x \in G \setminus Z(G)\}$ forms a partition with kernel Z(G). It follows that $\{\frac{C_G(x)}{Z(G)} | x \in G \setminus Z(G)\}$ forms a partition whose kernel is the trivial subgroup (see also Proposition 1.2 of Ito (1953)).

Lemma 2.5. (Lemma 2.4 of Abdollahi et al. (2007)) Let G be a finite non-abelian group and $\{x_1, ..., x_r\}$ be a set of pairwise non-commuting elements of G with maximal size. Then

- (1) $r \ge 3$.
- (2) $r+1 \leq |Cent(G)|$.
- (3) r = 3 if and only if |Cent(G)| = 4.
- (4) r = 4 if and only if |Cent(G)| = 5.

Proposition 2.1. (Proposition 2.5 of Abdollahi et al. (2007)) Let G be a finite group and let $X = \{x_1, ..., x_r\}$ be a set of pairwise non-commuting elements of G having maximal size.

- (a) If |Cent(G)| < r + 4, then
- (1) For each element $x \in G$, $C_G(x)$ is abelian if and only if $C_G(x) = C_G(x_i)$ for some $i \in \{1, ..., r\}$.
- (2) If $C_G(x_i)$ is a maximal subgroup of G for some $i \in \{1, ..., r\}$, then $Z(G) = C_G(x_i) \cap C_G(x_j)$ for all $j \in \{1, ..., r\} \setminus \{i\}$. In particular, if $|G: C_G(x_1)| \leq |G: C_G(x_2)| \leq 2$, then |Cent(G)| = 4, and if $|G: C_G(x_1)| \leq |G: C_G(x_2)| = 3$, then |Cent(G)| = 5.
- (b) If |Cent(G)| = r+2, then there exists a proper non-abelian centralizer $C_G(x)$ which contains $C_G(x_{i_1})$, $C_G(x_{i_2})$ and $C_G(x_{i_3})$ for three distinct $i_1, i_2, i_3 \in \{1, ..., r\}$.
- (c) If |Cent(G)| = r + 3, then there exists a proper non-abelian centralizer $C_G(x)$ which contains $C_G(x_{i_1})$ and $C_G(x_{i_2})$ for two distinct $i_1, i_2 \in \{1, ..., r\}$.
- **Lemma 2.6.** (Lemma 2.6 of Abdollahi et al. (2007)) Let G be a finite non-abelian group. Then every proper centralizer of G is abelian if and only if |Cent(G)| = r + 1, where r is the maximal size of a set of pairwise non-commuting elements of G.

Theorem 2.1. (Theorem 4.2 of Tomkinson (1987)) Suppose that G is covered by n abelian subgroups A_1, A_2, \dots, A_n , then:

- (i) If $G = \langle A_1, A_2 \rangle$, then $\left| \frac{\vec{G}}{Z(G)} \right| \leq (n-1)^2$.
- (ii) If $\langle A_1, A_2 \rangle < G$, then $|\frac{G}{Z(G)}| \le 2(n-2)^{\log_2(n-2)}$.

Theorem 2.2. (Theorem 1 of Cohn (1994)) Suppose that $H_n \leq H_{n-1} \leq \cdots \leq H_1$ are proper subgroups of a group G. If $G = \bigcup_{r=1}^n H_r$ assumed to be maximal, then $|G| \leq \sum_{r=2}^n |H_r|$, with equality if and only if (a) $H_1H_r = G$; $r \neq 1$ and (b) $H_r \cap H_s \subset H_1$; $r \neq s$.

3. The Proof of Theorem 1.1

Let G be a finite primitive 11-centralizer group of odd order. Let $\{x_1, \cdots x_r\}$ be a set of pairwise non-commuting elements of G having maximal size. Then $X_i = C_G(x_i), 1 \le i \le r$ is an irredundant r-cover with intersection Z(G). Assume that $|G: X_i| = \alpha_i$, where $\alpha_1 \le \cdots \le \alpha_r$. Since G is a primitive 11-centralizer group, by Lemma 2.5, we have $5 \le r \le 10$. Then we first have the following lemma.

Lemma 3.1. With the above notations we have $r \neq 5, 6$.

Proof. First, we show that $r \neq 5$. Suppose, for a contradiction, that r = 5. By Remark 2.1, $\left|\frac{G}{Z(G)}\right| \leq 16$. Now Lemma 2.4 implies that $\alpha_2 \leq 4$. Since |G| is odd, we have $\alpha_2 = 3$ and $\left|\frac{G}{Z(G)}\right| \in \{9, 15\}$. Therefore $\frac{G}{Z(G)}$ is abelian, which is not possible. It implies that $r \neq 5$.

Now we show that $r \neq 6$. Suppose, for a contradiction, that r = 6. So by Remark 2.1, $|\frac{G}{Z(G)}| \leq 36$. Now Lemma 2.4 implies that $\alpha_2 \leq 5$. Suppose that $\alpha_2 = 3$. Since 3 is a divisor of $|\frac{G}{Z(G)}|$, we have $|\frac{G}{Z(G)}| \in \{9, 15, 21, 27, 33\}$. Therefore G is an AC-group and by Lemma 2.6, |Cent(G)| = 7, a contradiction. Now suppose that $\alpha_2 = 5$. Since 5 is a divisor of $|\frac{G}{Z(G)}|$, we have $|\frac{G}{Z(G)}| \in \{15, 25, 35\}$. Therefore $\frac{G}{Z(G)}$ is abelian, which is not possible. It implies that $r \neq 6$.

Now by Lemma 3.1, it is enough to investigate four cases that will be verified separately.

Case 1: r=7. By Remark 2.1, $|\frac{G}{Z(G)}| \leq 81$. Also Lemma 2.4 implies that $\alpha_2 \leq 6$. Since |G| is odd, then $\alpha_2=3$ or 5. If $\alpha_2=3$, then $|\frac{G}{Z(G)}| \in \{9,15,21,27,33,39,45,51,57,63,69,75,81\}$. If $|\frac{G}{Z(G)}| \in \{9,15,21,27,33,39,45,51,57,63,69,75\}$, then G is an AC-group and by Lemma 2.6, |Cent(G)|=8, a contradiction. Now suppose that $|\frac{G}{Z(G)}|=81$. By The GAP Group (2013), we conclude that there are four 11-centralizer groups of order 81 and the only capable group between them is $(\mathbb{Z}_9 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3$. Therefore we have $\frac{G}{Z(G)} \cong$

 $(\mathbb{Z}_9 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3$. Now suppose that $\alpha_2 = 5$. So $|\frac{G}{Z(G)}| \in \{15, 25, 35, 45, 55, 65, 75\}$. It implies that G is an AC-group and by Lemma 2.6, |Cent(G)| = 8, a contradiction.

Case 2: r=8. In this case $\alpha_2 \leq 7$. If $\alpha_2=3$, then by Proposition 2.1, |Cent(G)|=5, a contradiction. If $\alpha_2=5$, then $\alpha_1=3$ or 5. If $\alpha_1=3$, then $G=X_1X_2$ and by Proposition 2.1, $X_1\cap X_2=Z(G)$. Hence, $|\frac{G}{Z(G)}|=15$ which is not possible. If $\alpha_1=5$, then $|\frac{G}{Z(G)}|\leq 25$. Now since 5 is a divisor of $|\frac{G}{Z(G)}|, |\frac{G}{Z(G)}|\in \{15,25\}$, which is again a contradiction. Finally, suppose that $\alpha_2=7$. By Lemma 2.4, $\alpha_2=\alpha_3=\cdots=\alpha_8=7$ and so $|G|=\sum_{i=2}^8 |X_i|$. Also $G=X_1X_2$ by Theorem 2.2 and $X_1\cap X_2=Z(G)$ by Proposition 2.1. Since |G| is odd, $\alpha_1=3,5$ or 7. If $\alpha_1=3$, then $|\frac{G}{Z(G)}|=21$, a contradiction. If $\alpha_1=5$, then $|\frac{G}{Z(G)}|=35$, which is not possible. If $\alpha_1=7$, then $|\frac{G}{Z(G)}|=49$ and $\frac{G}{Z(G)}$ is abelian, which is a contradiction.

Case 3: r=9. In this case by Lemma 2.4, $\alpha_2 \leq 8$. If $\alpha_2=3$, by Proposition 2.1, |Cent(G)|=5, a contradiction. If $\alpha_2=5$, then $\alpha_1=3$ or 5. If $\alpha_1=3$, then $G=X_1X_2$ and by Proposition 2.1, $X_1\cap X_2=Z(G)$. Hence, $|\frac{G}{Z(G)}|=15$, which is not possible. If $\alpha_1=5$, then $|\frac{G}{Z(G)}|\leq 25$. Now since 5 is a divisor of $|\frac{G}{Z(G)}|, |\frac{G}{Z(G)}|\in \{15,25\}$, which is again a contradiction. Finally, suppose that $\alpha_2=7$. Therefore $\alpha_1=3,5$ or 7. If $\alpha_1=3$, then $G=X_1X_2$ and since $X_1\cap X_2=Z(G)$, therefore $|\frac{G}{Z(G)}|=21$, which is a contradiction. Similarly, If $\alpha_1=5$, then $|\frac{G}{Z(G)}|=35$, a contradiction. Finally, if $\alpha_1=7$, then $G=\langle X_1,X_2\rangle$. Therefore by Theorem 2.1, $|\frac{G}{Z(G)}|\leq 64$. Since |G| is odd and G is non-abelian, $|\frac{G}{Z(G)}|\in \{21,35,49,63\}$. It implies that G is an AC-group and by Lemma 2.6, |Cent(G)|=10, a contradiction.

Case 4: r = 10. In this case by Lemma 2.6, every proper centralizer of G is abelian and by Lemma 2.4, we obtain that $\alpha_2 \leq 9$.

If $\alpha_2=3$, then |Cent(G)|=5 by Proposition 2.1, a contradiction. Now suppose that $\alpha_2=5$, then $|\frac{G}{Z(G)}|\leq 25$ and since 5 is a divisor of $|\frac{G}{Z(G)}|$, then $|\frac{G}{Z(G)}|\in\{15,25\}$. Therefore $\frac{G}{Z(G)}$ is abelian, which is not possible. If $\alpha_2=7$, then $|\frac{G}{Z(G)}|\leq 49$ and since 7 is a divisor of $|\frac{G}{Z(G)}|$, then $|\frac{G}{Z(G)}|\in\{21,35,49\}$. If $|\frac{G}{Z(G)}|=21$, then $\frac{G}{Z(G)}\cong \mathbb{Z}_7\rtimes \mathbb{Z}_3$ and |Cent(G)|=9 by Corollary 2.1, a contradiction. Now if $|\frac{G}{Z(G)}|\in\{35,49\}$, then $\frac{G}{Z(G)}$ is abelian, which is not possible. Finally suppose that $\alpha_2=9$, then $|\frac{G}{Z(G)}|\leq 81$ and since 9 is a divisor of $|\frac{G}{Z(G)}|$, then $|\frac{G}{Z(G)}|\in\{9,27,45,63,81\}$. Suppose that $|\frac{G}{Z(G)}|=27$. Since center of every group of order 27 is of order 3, Lemma 2.1 implies that

 $|Cent(\frac{G}{Z(G)})|=5$, a contradiction. If $|\frac{G}{Z(G)}|=45$, then by Lemma 2.2, $\frac{G}{Z(G)}\cong A_4$ or $|Cent(\frac{G}{Z(G)})|=7$, a contradiction. Now suppose that $|\frac{G}{Z(G)}|=63$. Then by Lemma 2.2, $\frac{G}{Z(G)}\cong A_4$ or $|Cent(\frac{G}{Z(G)})|=9$, which is not possible. Finally, if $|\frac{G}{Z(G)}|=81$, then $\frac{G}{Z(G)}\cong (\mathbb{Z}_9\times\mathbb{Z}_3)\rtimes\mathbb{Z}_3$. Now the proof of Theorem 1.1 is complete.

4. Conclusion

In this paper, we have studied all finite primitive 11-centralizer groups G of odd order. We have considered centralizers of a set of pairwise non-commuting elements of G of maximal size as an irredundant r-cover and have shown that the quotient group $\frac{G}{Z(G)}$ is isomorphic to $(\mathbb{Z}_9 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3$. We propose as two open problems to verify the cases when G is a 11-centralizer group or G is a primitive 11-centralizer group of even order.

References

- Abdollahi, A., Ataei, M. J., Jafarian Amiri, S. M., and Mohammadi Hassan-abadi, A. (2005). Groups with a maximal irredundant 6-cover. *Communications in Algebra*, **33(9)**:3225–3238.
- Abdollahi, A. and Jafarian Amiri, S. M. (2007). On groups with an irredundant 7-cover. *Journal of Pure and Applied Algebra*, **209**(2):291–300.
- Abdollahi, A., Jafarian Amiri, S. M., and Mohammadi Hassanabadi, A. (2007). Groups with specific number of centralizers. *Houston Journal of Mathematics*, **33**(1):43–57.
- Ashrafi, A. (2000a). Counting the centralizers of some finite groups. Korean Journal of Computational and Applied Mathematics, 7(1):115–124.
- Ashrafi, A. (2000b). On finite groups with a given number of centralizers. *Algebra Colloquium*, **7(2)**:139–146.
- Ashrafi, A. and Taeri, B. (2006). On finite groups with exactly seven element centralizers. *Journal of Applied Mathematics and Computing*, **22**(1-2):403–410.
- Baishya, S. J. (2013). On finite groups with specific number of centralizers. *International Electronic Journal of Algebra*, **13**:53–62.

- Belcastro, S. and Sherman, G. (1994). Counting centralizers in finite groups. *Mathematics Magazine*, **67**(**5**):366–374.
- Bryce, R. A., Fedri, V., and Serena, L. (1997). Covering groups with subgroups. Bulletin of the Australian Mathematical Society, **55**(3):469–476.
- Cohn, J. H. E. (1994). On n-sum groups. Mathematica Scandinavica, 75:44–58.
- Foruzanfar, Z. and Mostaghim, Z. (2014). On 10-centralizer groups of odd order. *International Scholarly Research Notices: Algebra, Article ID 607984*, 4 pages.
- Foruzanfar, Z. and Mostaghim, Z. (2015). A note on the number of centralizers in finite groups. *Journal of Advanced Research in Pure Mathematics*, **7**(1):1–9.
- Greco, D. (1957). Sui gruppi che sono somma di quattro o cinque sottogruppi. Rendiconti dell'Accademia delle Scienze Fisiche e Matematiche. Serie IV, 23:49–59.
- Ito, N. (1953). On finite groups with given conjugate types. Nagoya Mathematical Journal, 6:17–28.
- Neumann, B. H. (1954). Groups covered by finitely many cosets. *Publicationes Mathematicae-Debrecen*, **3**:227–242.
- Scorza, G. (1926). Gruppi che possono pensarsi come somma di tre sottogruppi. Bollettino della Unione Matematica Italiana. Series IX, 5(4):216–218.
- The GAP Group (2013). GAP Groups, Algorithms and Programming, Version 4.6.4 (http://www.gap-system.org).
- Tomkinson, M. J. (1987). Groups covered by finitely many cosets or subgroups. *Communications in Algebra*, **15**(**4**):845–859.