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ABSTRACT

Let G be a finite group and let |Cent(G)| be the number of distinct

centralizers of its elements. G is called n-centralizer if |Cent(G)| = n
and is called primitive n-centralizer if |Cent(G)| = |Cent(%)| = n.
In this paper, we characterize all primitive 11-centralizer groups of odd
order.
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1. Introduction

In this paper, all groups are finite and all notations are standard. For
example Z,, denotes the cyclic group of order n, Z(G) denotes the center of
a group G, D, denotes the dihedral group of order 2n and K x H denotes
the semidirect product of K and H with normal subgroup K. A finite group
G is said to be an AC-group if Cg(z) is abelian for all x € G\ Z(G). It was
shown in Baishya| (2013]) that if |%\ = pq or pqr where p,q,r are primes
not necessarily distinct, then G is an AC-group. We recall that a group G is

called capable if there exists a group H such that G = % Given a group

G, let Cent(G) be the set of centralizers of elements of G, i.e., Cent(G) :=
{Cqs(x)|z € G}, where Cg(x) is the centralizer of the element  in G. A finite
group G is called n-centralizer if |Cent(G)| = n and primitive n-centralizer
if |Cent(G)| = |C’ent(%)\ = n. Obviously a finite group G is 1-centralizer
if and only if it is abelian. It was shown in Belcastro and Sherman| (1994)
that there is no finite n-centralizer group for n € {2,3}. Also all finite n-
centralizer groups for n € {4,5} were classified. As a simple result, we can see
that there is no finite primitive 4-centralizer group. Moreover a finite group G
is primitive 5-centralizer if and only if % 2 S3. In|Ashrafi (2000a), all finite
6-centralizer groups were studied. Also it was shown in |Ashrafi| (2000b)) that
if G is primitive 6-centralizer, then % =~ A,. In|Abdollahi et al.| (2007)), all
n-centralizer groups were characterized for n € {7,8} and it was shown that
there is no finite primitive 8-centralizer group. In |Ashrafi and Taeri (2006,
the structure of finite primitive 7-centralizer groups were verified. Also in
Foruzanfar and Mostaghim| (2015)), finite primitive 9-centralizer groups were
classified and it was shown that if G is primitive 9-centralizer, then % = Dy,
To; =< a,bla® = b" = 1,ba = ab® > or < a,b|a® = b" = 1,07 ba = b3 >.
Finally in [Foruzanfar and Mostaghim| (2014)), it was proved that there is no
finite 10-centralizer group of odd order. The purpose of this paper is to classify
all primitive 11-centralizer groups of odd order.

Theorem 1.1. If G is a primitive 11-centralizer group of odd order, then %
is isomorphic to (Zg X Z3) X Zs.

2. Preliminary Results

A cover for a group G is a collection H of proper subgroups of G such
that G = Ugex H. A cover with n members is called n-cover, for a natural
number n. Also it is called irredundant if no proper sub-collection is also
a cover and is called a partition with kernel K if the intersection of pairwise
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members of the cover is K. (1954) proved that for a group G with an

irredundant n-cover, the index of the intersection of the cover in G is bounded
by a function of n and Tomkinson| (1987) improved that bound. Let f(n) be
the largest index |G : D|, where G is a group with an irredundant n-cover
whose intersection of its members is D. was the first who posed
a question on finite covers. He settled the question which groups are the union
of three proper subgroups and proved f(3) = 4. Furthermore, Grecol| (1957,
[Bryce et al.| (1997)), |[Abdollahi et al.| (2005) and |[Abdollahi and Jafarian Amiri|
(2007) obtained the values of f(n), for n = 4,5,6,7, respectively and they
proved that f(4) =9, f(5) = 16, f(6) = 36 and f(7) = 81. In order to prove
Theorem 1.1, we first present some lemmas and propositions that will be used
in proof of it.

Lemma 2.1. (Theorem 6 of Belcastro and Sherman, (1994))) Let p be a prime.
If % >Z,%xZ,, then |Cent(G)| =p + 2.

Corollary 2.1. (Corollary 2.5 of |Baishyd, (2015)) Let p > q be primes. If
‘%‘ = pq, then |Cent(G)| = p + 2.

Lemma 2.2. (Lemma 2.6 of |[Foruzanfar and Mostaghim| (2015)) Let G be
a finite non-abelian group and |G| = p*q where p and q are distinct prime
numbers.

a) If p < q, then G = Ay or |Cent(G)| = q + 2.

b) If p > q, then |Cent(G)| =p+2 or p*> +2 .

Lemma 2.3. (Lemma 2.1 of|Baishya ) Let |%| = pqr, where p, q, T
are primes not necessarily distinct. Then G is an AC-group.

Lemma 2.4. (Lemma 3.3 of |Tomkinson (1987)) Let M be a proper subgroup
of the finite group G and let Hy,Hs,...,H}, be subgroups of G with |G : H;| = 5;
and f1 < ... < Br. If G = MUH U...U Hg, then 81 < k. Furthermore, if
Bi =k, then B1 = B2 = ... =By =k and H; N H; < M for any two distinct
and j.

Definition 2.1. A non-empty subset X = {x1,...,x.} of a finite group G is
called a set of pairwise non — commuting elements if x;x; # xjx; for all
distinct i,j € {1,...,r}. A set of pairwise non-commuting elements of G is said
to have maximal size if its cardinality is the largest one among all such sets.

Remark 2.1. Let G be a finite group and {x1, ...,z } be a set of pairwise non-
commuting elements of G having mazimal size. Then

(1) {Cq(=zi)|i = 1,...,7} is an irredundant r-cover with the intersection Z(G) =
N7_,Cq(z;) (see Theorem 5.1 of|Tomkinson (1987)).

(2) |ZGG) < f(r) (see Corollary 5.2 0f|T0mkinsow{ 41987V).

(3) f(3) =4, f(4) =9, f(5) =16, f(6) = 36 and f(7) = 81 (see|Scorzal (1926},

—~

—~]

w
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Greco| (1957), |Bryce et al| (1997), |Abdollaht et al| (2005) and |Abdollahi and
Jafarian Amird (2007), respectively).

(4) Let G be a group such that every proper centralizer in G is abelian. Then
for all a,b € G\ Z(G) either Cg(a) = Cq(b) or Cg(a) N Cq(b) = Z(G).

If z € (Cgla) N Cg(b) \ Z(G), then Cg(z) contains both Cg(a) and Cg(b),
since Cg(a) and Cq(b) are abelian. Since z is not in Z(G), Ca(z) < Ca(a)
and Cg(z) < Cg(b). Thus Cg(z) = Cgl(a) = Cq(b). Hence, in such a group
G, {Ca(z) |z € G\ Z(G)} forms a partition with kernel Z(G). It follows that

{C;Eg)) |z € G\ Z(G)} forms a partition whose kernel is the trivial subgroup

(see also Proposition 1.2 of [Ito| ).

Lemma 2.5. (Lemma 2.4 of |Abdollaht et al| (2007)) Let G be a finite non-
abelian group and {x1,...,x.} be a set of pairwise non-commuting elements of
G with mazimal size. Then

(1) r > 3.

(2) r+1 < |Cent(G)|.

(3) r =3 if and only if |Cent(G)| = 4.

(4) r =4 if and only if |Cent(G)| = 5.

Proposition 2.1. (Proposition 2.5 of Abdollaht et al.| (2007)) Let G be a finite
group and let X = {x1,...,z,.} be a set of pairwise non-commuting elements of
G having maximal size.

(a) If |Cent(G)| < r +4, then

(1) For each element x € G, Cq(x) is abelian if and only if Co(x) = Ca(x;)
for some i € {1,....r}.

(2) If Cg(z;) is a mazimal subgroup of G for some i € {1,...,r}, then Z(G) =
Ce(z;)NCq(z;) for all j € {1,...,r}\{i}. In particular, if |G : Cq(z1)] < |G -
Ca(x2)] <2, then |Cent(GQ)| =4, and if |G : Ca(x1)| < |G : Co(x2)| = 3, then
|Cent(G)| = 5.

(b) If |Cent(G)| = r+2, then there exists a proper non-abelian centralizer Ca(x)
which contains Cg(x;,), Ca(xi,) and Cg(xiy,) for three distinct iy,i2,i3 €
{1,..,r}.

(¢) If |Cent(G)| = r + 3, then there exists a proper non-abelian centralizer
Ca(x) which contains Ca(x;,) and Cg(z;,) for two distinct i1,i2 € {1,...,7}.

Lemma 2.6. (Lemma 2.6 of [Abdollahi et al| (2007)) Let G be a finite non-
abelian group. Then every proper centralizer of G is abelian if and only if
|Cent(G)| = r + 1, where v is the maximal size of a set of pairwise non-
commuting elements of G.

Theorem 2.1. (Theorem 4.2 of|Tomkinson| (1987)) Suppose that G is covered
by n abelian subgroups Ay, As, -, Ay, then:

(1) If G = (A1, Az), then |%| <(n-1)=%

(i4) If (A1, Az) < G, then | z(5| < 2(n — 2)'°82("2)
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Theorem 2.2. (Theorem 1 of|Cohn (1994)) Suppose that H,, < Hp,_1 < -+ <
H; are proper subgroups of a group G. If G = Ul'_, H, assumed to be mazimal,
then |G| < Yr_, |H,|, with equality if and only if (a) H1H, =G ;r # 1 and
(b HHNH, C Hy ;1 #s.

3. The Proof of Theorem 1.1

Let G be a finite primitive 11-centralizer group of odd order. Let {x1, - -z}
be a set of pairwise non-commuting elements of G having maximal size. Then
X, = Cg(x;),1 < i < ris an irredundant r-cover with intersection Z(G).
Assume that |G : X;| = «a;, where @3 < -+ < .. Since G is a primitive
11-centralizer group, by Lemma we have 5 < r < 10. Then we first have
the following lemma.

Lemma 3.1. With the above notations we have r # 5, 6.

Proof. First, we show that r # 5. Suppose, for a contradiction, that » = 5. By
Remark E |%| < 16. Now Lemma implies that as < 4. Since |G| is
odd, we have oz = 3 and |%| € {9,15}. Therefore % is abelian, which is
not possible. It implies that r # 5.

Now we show that r # 6. Suppose, for a contradiction, that r = 6. So by
Remark H |%| < 36. Now Lemma implies that as < 5. Suppose
that as = 3. Since 3 is a divisor of \%L we have \%\ € {9,15,21,27,33}.
Therefore G is an AC-group and by Lemma[2.6] [Cent(G)| = 7, a contradiction.
Now suppose that as = 5. Since 5 is a divisor of |%|, we have |%| €
{15,25,35}. Therefore G _ is abelian, which is not possible. It implies that

VAe))
r # 6. O

Now by Lemma[3.1], it is enough to investigate four cases that will be verified
separately.

Case 1: r = 7. By Remark \%\ < 81. Also Lemma H implies
that as < 6. Since |G| is odd, then ay = 3 or 5. If ay = 3, then \%| IS
{9,15,21,27,33,39,45,51,57,63,69, 75,81 }. If|%\ € {9,15,21,27, 33, 39,45,
51,57,63,69,75}, then G is an AC-group and by Lemrna@7 |Cent(G)| = 8,
a contradiction. Now suppose that |%| = 81. By The GAP Group| (2013),

we conclude that there are four 11-centralizer groups of order 81 and the only

capable group between them is (Zg X Z3) x Z3. Therefore we have % o
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(Z9xZ3)xZ3. Now suppose that as = 5. So \%\ € {15,25,35,45,55,65, 75}.
It implies that G is an AC-group and by Lemma |Cent(G)| = 8, a contra-
diction.

Case 2: r = 8. In this case ay < 7. If ay = 3, then by Proposition [2.1]
|Cent(G)| = 5, a contradiction. If s = 5, then a; = 3 or 5. If a; = 3, then
G = XX, and by Proposition X1 N Xy = Z(G). Hence, \%\ =15
which is not possible. If ay = 5, then |%| < 25. Now since 5 is a divisor of
|%|7 |%| € {15,25}, which is again a contradiction. Finally, suppose that
ag =7. By Lemma ag=ag3=---=ag="7andso |G| = Z?:z | X;]. Also
G = X1 X, by Theorem [2.2]and X; N X, = Z(G) by Proposition [2.1] Since |G|
isodd, a1 = 3,5 or 7. If oy = 3, then \%\ = 21, a contradiction. If oy = 5,
then |%| = 35, which is not possible. If a; = 7, then \%| =49 and %

Z
is abelian, which is a contradiction.

Case 3: r = 9. In this case by Lemma ag < 8. If ag = 3, by Proposition
|Cent(G)| = 5, a contradiction. If ap = 5, then a3 = 3 or 5. If a; = 3,
then G = X, X5 and by Proposition X1N X, = Z(G). Hence, | 58| = 15,
which is not possible. If @3 = 5, then |%| < 25. Now since 5 is a divisor
of |%\, |%| € {15,25}, which is again a contradiction. Finally, suppose
that ag = 7. Therefore vy = 3,5 or 7. If @y = 3, then G = X1 X5 and since
X1 N Xy = Z(Q), therefore |%| = 21, which is a contradiction. Similarly,
If a; = 5, then |%\ = 35, a contradiction. Finally, if o = 7, then G =
(X1, X2). Therefore by Theorem |%| < 64. Since |G| is odd and G is
non-abelian, |%| € {21,35,49,63}. It implies that G is an AC-group and by
Lemma [2.6] |Cent(G)| = 10, a contradiction.

Case 4: r = 10. In this case by Lemma [2.6] every proper centralizer of G is
abelian and by Lemma [2.:4] we obtain that as < 9.

If ay = 3, then |Cent(G)| = 5 by Proposition a contradiction. Now
suppose that ay = 5, then |%| < 25 and since 5 is a divisor of |%|, then
|%| € {15,25}. Therefore % is abelian, which is not possible. If ap =7,
theng%\ < 49 and siGnce 7 is a divisor of |%|, then |%| € {21,35,49}.
If | 7| = 21, then 5 = Z7 x Z3 and |Cent(G)| = 9 by Corollary a
contradiction. Now if |%\ € {35,49}, then % is abelian, which is not
possible. Finally suppose that ags = 9, then \%| < 81 and since 9 is a
d?visor of \%\, then |%| € {9,27, 4.5,63,81}. Suppose that |%| = 27.
Since center of every group of order 27 is of order 3, Lemma [2.1] implies that
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\Cent(%ﬂ =5, a contradiction. If |%| = 45, then by Lemma|2.2 % =
Ay or |Cent(%)| =7, a contradiction. Now suppose that |%| = 63. Then
by Lemma [2.2 % = A, or |Cent(%)| =9, which is not possible. Finally,
if | 77| = 81, then 3Gy = (Zg x Z3) % Z5.
Now the proof of Theorem 1.1 is complete.

4. Conclusion

In this paper, we have studied all finite primitive 11-centralizer groups G of
odd order. We have considered centralizers of a set of pairwise non-commuting
elements of G of maximal size as an irredundant r-cover and have shown that
the quotient group % is isomorphic to (Zg x Z3) x Z3. We propose as two
open problems to verify the cases when G is a 11-centralizer group or G is a
primitive 11-centralizer group of even order.
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